If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25c^2+15c=0
a = 25; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·25·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*25}=\frac{-30}{50} =-3/5 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*25}=\frac{0}{50} =0 $
| 64=48+16z | | s/6+16=20 | | 1=8j-31 | | 5-7+5y=9 | | 9j-27=27 | | 16=r/3+6 | | 66=k/8+56 | | (x+4)^2+(9-2)^2=144 | | 54=44+g/10 | | 9·(x-3)-6x=-24x | | g/2+7=10 | | m/9+8=16 | | g/45+45=46 | | 43=6v-23 | | 35=14+7/x | | -62+8w=29-5w | | d/2+16=20 | | 44=27+68/s | | 71=19+52/n | | 46=51/c+43 | | 7+12p-2=7p+77-4p | | -6x-13=31 | | 5(x=3)=2(2x+11) | | 29=17+4n | | 12y-98=82 | | 55+7f=90 | | 54=3q+45 | | 92=26+33v | | 81=4m-99 | | 56/s+39=46 | | x+.05x=793,000 | | 95=p/42=94 |